Adaptive Bayesian density regression for high-dimensional data
نویسندگان
چکیده
Density regression provides a flexible strategy for modeling the distribution of a response variable Y given predictors X = (X1, . . . ,Xp) by letting that the conditional density of Y given X as a completely unknown function and allowing its shape to change with the value of X. The number of predictors p may be very large, possibly much larger than the number of observations n, but the conditional density is assumed to depend only on a much smaller number of predictors, which are unknown. In addition to estimation, the goal is also to select the important predictors which actually affect the true conditional density. We consider a nonparametric Bayesian approach to density regression by constructing a random series prior based on tensor products of spline functions. The proposed prior also incorporates the issue of variable selection. We show that the posterior distribution of the conditional density contracts adaptively at the truth nearly at the optimal oracle rate, determined by the unknown sparsity and smoothness levels, even in the ultra highdimensional settings where p increases exponentially with n. The result is also extended to the anisotropic case where the degree of smoothness can vary in different directions, and both random and deterministic predictors are considered. We also propose a technique to calculate posterior moments of the conditional density function without requiring Markov chain Monte Carlo methods.
منابع مشابه
Bayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملOptimal Bayesian posterior concentration rates with empirical priors
In high-dimensional Bayesian applications, choosing a prior such that the corresponding posterior distribution has optimal asymptotic concentration properties can be restrictive in the sense that the priors supported by theory may not be computationally convenient, and vice versa. This paper develops a general strategy for constructing empirical or data-dependent priors whose corresponding post...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملMethods for regression analysis in high-dimensional data
By evolving science, knowledge and technology, new and precise methods for measuring, collecting and recording information have been innovated, which have resulted in the appearance and development of high-dimensional data. The high-dimensional data set, i.e., a data set in which the number of explanatory variables is much larger than the number of observations, cannot be easily analyzed by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013